Boddingtons Power Controls

Unit 1 Zone D Chelmsford Road 1LE, DUNMOW CM§ 1XG Essex
TEL: 01371 876543., fax: 01371 875460.
sales/@boddingtonspowercontrols.couk

CX PLUS OR BLRCX WITH MODBUS

Boddingtons
Pewer Controls

CXPLUS i

2.1 Mounting

Put the exiension module on the rear side of the

main device and use the delivered rivet to fasten

the extension module.

Contents — see next page

Paragraph Details
1 Overview
2 Fitting the modbus Extension Box on the CXPLUS
2.1 Mounting arrangements for the box
2.2 Connection
2.3 CXPLUS — MODBUS setup
3 Modbus / RS 485
3.1 The physical layer as decscribed in EIA485/1SO 8482
3.1.1 Line termination with resistors
3.1.2 Line biasing
3.13 Communication Indicator
3.2 MODBUS Protocol for the CXPLUS
3.2.1 MODBUS description
3.2.2 Serial Data Format and Framing
3.2.3 Serial Transmission Modes
3.2.4 Function Codes
3.25 Exception Codes
3.2.6 Master/Slave Protocol
3.2.7 Address Space
3.2.8 Measurement Values
3.2.9 Parameter Settings
3.2.10 Step Status
3.2.11 Device Status
3.2.12 Storage Settings
4 Trouble Shooting
5 Device Data
5.1 Technical Data
5.2 Drawings

IMPORTANT !

Where this sign appears in the text — this indateimportant point regarding safety of
operation of the CXPLUS. If this point is not hedd the relay may be damaged beyond
repair and guarantee rights could be affected.

For more information on the MODBUS protocol se@ww.modbus.or g.

1 Overview

The MODBUS Extension of the BLR-CX offers the possibility to read values from the device and madify the

settings of the device.

This document describes the transmission by use of the MODBUS-protocal. This protocol defines methods
for data transmission and access control, but doesn't restrict the user to one single physical transmission
system. In case of the BLR-CX, R5485 is used on the physical layer. As this is a bus-capable interface, it is
possible to connect more than one BLR-CX to a single pair of wires and access the units by use of an D

number.

A lot of commercial devices and PLCs are able to use the MODBUS protocol, either as bus master ar slave.
Various SCADA solutions are also available from different vendors. So, the integration of the BLR-CX in an

existing bus-system or setting up a new bus system is only a minor issue.

2 Mobus extension box

2.1 Mounting

Put the extension module on the rear side of the

main device and use the delivered rivet to fasten

the extension module.

ﬁi... M&fﬁ;—s’-;;.’:'#ﬁﬂn
2.2 Connection Pﬁ?‘-’l

i
il |",I.|
ek i |

Modbus RTU RS 485

O@0

“.F.“!W
Titn

TTl-interface ‘

The BLR-CX uses a 3-pin connector. The connections can be
seen in the picture. To use the MODBUS, one must connect the

data lines + and —and the commaon ground (middie pin).

The power supply of the Modbus extension has the same voltage range as the
main device. Due to this the supply voltage can be taken from the voltage

terminals. Please consider the labels on the device.

Modbus RTU RS 485

®DO

To establish the data cammunication between main device and
TTL-nterface

extension box, use the RJ45 cable which comes with the

extensian box.

The LED next to the RJ45 plug on the communication module
indicates a communication between module and extension
baox.

2.3 BLR-CX - MODBUS setup

If your device has MODBUS support, please connect the device via USB- cable
to your PC. Install and open the software which comes with the device. After

doing this steps you can adjust the following parameters:

re w1
% Seing

= P byre] ol

B =5 Darsice

L)

i

= b

use

|||—\ PE
=

ADDRESS: This is the
devices slave address
(slave |D). The wald
range is 1-247.

BAUD RATE: Select
the baud rate here.

The valid range is
1200 - 38400 baud.

PARITY: Select the
party to be B8noneZ,
8Bevenl or Bodd1 (data
bit/parity/stop bit).

The settings for baud rate and

parity must be the same for all bus devices; the address must be unique for each device.

After doing the settings for the communication parameters click on the "PC->Device” button to send the

seftings to the device.

3 MODBUS / RS485

The implementation basically consists of two parts:

The RS485 transmission is used for serial data transport. It is able to interconnect more than one
device in a bus-like configuration. The RS485 protocol offers its "services” to the higher-level
MODBUS protocol.

The MCDBUS protocol uses the underlying serial data transport layer (RS485 in this case) to
communicate with several bus devices. It defines commands, address structures and data structures

to access the slave device.

3.1 The physical layer - RS485 (defined in EIA485/1S08482)

RS485 offers basic senal data transport to the higher-level MODBUS protocol layers. It is therefore called the

“physical layer" of the bus system. Higher layers use the lower physical layer as a basic "service” for data

tranzport.

RS485 uses two data wires for senal transmission. Each of them is driven to 0V or 5V by the transmitting

device. The two data wires always have different voltage levels. One state (one wire 5V, other wire GND}

represents the logic "OFF" state. The two wires exchange their voltages for the logic "ON" state. This

differential transmission mode makes the RS485 bus very resistant against electro-magnetic distortions and

therefore allows long transmission distances of more than 1000 metres.

The data fransmission rates of the BLR-CX can be selected between 1,2k, 2 4k, 4 8k 968k 192k, 38 4k,
57 6k and 115,2k baud. The parity can be selected between even, odd and no parity. All bus devices need to

use the same settings. Standard settings are: 9600 baud and even parity.

There exist two different types of RS485:

2-wire R5485:; This type uses only two data wires, which form one data channel. This means, that,
after sending a request, the bus master has to deactivate its transmitter to make the data line free for

the answering device. (Half-duplex mode)

4-wire RS5485: this types uses one data line (=two wires) for the master-»slave direction and another
one (two maore wires) for the slave ->master direction. The BLR-CX does not support dwire
RS485!

Both types, 2wire and 4wire, need anather line to be connected, although it is not mentioned explicitly: the
common ground GND. So, for the 2wire version you need a cable with 3 wires, for the 4wire version one with
5 wires! You should use a shielded cable, but never use the shield for GND connection. It should only be

connected to protective ground to reduce electromagnetic influences.

The R5485 bus interconnects more than one device (typically up to 32). To accomplish this, the several data
signals have to be interconnected for all bus devices. These are the two data lines and the common ground
GMND. All devices are connected to the bus in parallel. Avoid using taps, as they tend to be the source of
transmission errars if they are too long. You should always prefer direct connection of the device to the main

bus wire.

One bus cable with all its devices is called a "bus segment”. Several segments can be interconnected by

using “repeaters”.

3.1.1 Line termination

One very important issue is the termination of the bus line. This is definitely needed for a working bus system
to cancel out echoes from the line ends that would distort data signals. To terminate the bus cable, one must
add a resistor at each end of the bus cable. The value of the resistor must match the cables impedance. At
most times, 120 Q is a good value to start with. Connect the termination resistor between data wires D{+)

and D(-) at each end of the bus segment.

Some devices, especially bus converters have built-in resistors. Please check the manuals for all devices
used on the bus. If these internal resistors cannot be disabled, this has a very important influence on your
bus: you must place these devices at one of the ends of the busl As the bus has only two ends, you can use

only two devices with fixed resistors per bus segmentl

3.2 The MODEBUS protocol

3.21 MODBUS - description

The MODBUS protocol uses the RS485 as an underlying physical layer and implements the data
transmission control mechanisms. It is therefore located on layer 2 {"link layer”) of the OSI layer model for

data exchange systems.

3.2.2 Serial data format and framing

The data is transmitted in fixed frames. The frames are separated by the bus being inactive for at least 3.5
characters. All data is organized in "protocol data units” (PDUs), which are transmitted over the serial bus

system by the underlying physical protocol layer.

PDU

-
-

A J

EC data

1 byte n bytes

Hustration 1 : "Protocol Data Unit" - PDU
The PDU consists of two parts:
+ The "function code” (FC) gives a command, which defines, what the slave unit has to do.

+ The data block consists of the corresponding data to a FC. Its usage depends on the FC, it can

contain pure data but also register addresses for slave data access.

The PDU defines a single data unit, which has to reach a certain bus device in order to perform a

function. The transportation differs, dependent on the physical layer that is used.

To be able to control the transmission, the PDU is extended with additional blocks of data for

transmission control purposes. For RS485, this extension results in the "application data unit" (ADU).

ADU
-
slave # G data CRG
| byte 1 byte n bytes 2 bytes

llustration 2 : "Application Data Unit" - ADU

The application data unit, as it is used with the serial transmission over RS485, contains two additional

blocks of data:
+ The first field specifies the target for the data block, the "slave number” (=slave address)

» The transmission is additionally secured by a CRC16 error correction code.

3.2.3 Serial transmission modes

The protocol defines two different encodings for the frames' data contents. The BLR-CX always uses the
RTU-mode! ASCIl mode is not implemented and is mentioned here only for the purpose of

completeness.

"Remote Terminal Unit" (RTU)

In this transmission mode every 8bit data word contains fwo 4-bit hexadecimal numbers. They are
transmitted as one complete byte; a maximum transmission density is reached. With every data word, the

following information is transnitted:

1 start bit

8 data bits, "least significant bit” first

1 parity bit (if set)

1 stop bit for parity even or odd / 2 if parity is none to compensate missing parity bit

"American Standard Code for Information Interchange" (ASCII)

In ASCll-mede, the two 4-byte nibbles of an Bbit data word are transmitted separately in ASCll-code
representation. A data byte which contents 5B;., will be divided into two parts and transmitted separately as
one byte each. The result is that TWO data bytes are transmitted with contents 35,., (FASCII-Code "5") and
42,.. (FASCI-Code "B"). This data mode is intended for compatibility reasons and makes debugging an the

transmission line easier but it also decreases transmission speed significantly.

3.2.4 Function codes

As already mentioned, the data packet contains "function codes” which specify a command from the bus
master to the bus slave. The slave executes the command (if possible) and then answers with the same
function code in the reply to acknowledge the command. The valid range for function codes is specified from
110 127, but only a part of it is actually really used. Please refer to the MODBUS specifications for detailed
Information. If it is impossibly for a slave to execute a command, it replies with an exception (=an error code).
The function code of an exception packet is the function code of the received command, which caused the
errar, but it was changed in a certain way. The most significant bit is set by the slave to signal the error

condition to the master. The contents of the data block specify the error in mare detail.

The BLR-CX supports function codes 03, (read holding register), 04 ... (read input register) and

06hex (write single register).

3.2.5 Exception codes

If a slave is not able to execute a command, which was sent by the master, it answers with exception codes.
A full list of codes can be found in the MODBUS specification. We do not include this list here, because the
master software will be able to handle most exceptions automatically. If one has to program the MODBUS

master stack by himself he will need the full specifications, and with that, he gets the full list of error codes.

3.2.6 Master-Slave protocol

For communication, a master-slave protocol is used. Only the bus master is permitted to initiate a transfer.
The "master” starts data exchange by sending a command to a slave by transmitting a data frame with the

corresponding function code (=command) to the slave, which will then execute it.

+ The unicast-mode is normally used to communicate on a Modbus system. One single slave is
addressed by the slave number in the master's data packet. The valid address range is between 1
and 247. The slave then executes the command and answers by sending a acknowledge data

packet back to the master.

+ Not in any case the master can receive an answer to his query: in multicast-mode all slaves on the
bus are addressed in parallel. They all execute the same command, but none of them will respond.

The master initiates a multicast transfer by using "0" as slave number.

3.2.7 Address space

The data in the BLR-CX is organized and accessed by means of addresses. Each address accesses one

data word. The data words are always 16bits wide.

The BLR-CX does not differentiate the addresses between the function codes. There is one big address
space availlable and to access each address’s data, any valid function code can be used. Nevertheless, the

data will only make sense when interpreted the correct wayl

The data can be of the following types:
« REAL: this is a 32 bit floating-paint number, as defined in IEEE Standard 754
+ UINT18: this is an unsigned 18 hit integer value.
« UINT32, SINT32: this is an unsigned/signed 32 bit integer value.

As the data is organized in 16 bit wide words, a set of sequential addresses has to be read for longer data
items. For these, the base address is given in the tables. To read a REAL with base address 12, one has to
read two 16bit words from addresses 12 and 13. These two values need to be concatenated to form the

desired result of 32 bits. Most SCADA software packages or PLCs can do this task for you.

There exist different types of addresses:

+ The MODBUS address always starts with 0 and can go up to 65535. It can be used

with any function code.

+ Certain PLCs lack correct handling of the 0 and therefore add 1 to the address. So their
addresses (MODBUS address +1) always start with 1.

e« Some SCADA tools add an offset to determine the function code, which shall be used to
access the device at the given address. They also sometimes add 1 to the MOSBUS address.
As an example, address 40001 would be “read MODBUS address 0 with function code 03,.,",
30012 would be “read MODBUS address 11 with function code 04,.".

Please refer to your software’s manual to find out the correct addresses.

The following tables always give the MODBUS addresses mentioned first in above list.

3.2.8 Measurement values
The measured values are available beginning from address 0 in intervals of 2 data words.

If the current or voltage is too small to calculate valid harmonics from it, the value at the base address (=
the fundamental) reads 0.0%. This indicates, that the higher harmanics for the current or voltage are also

invalid!

All these values can be accessed with function codes 03, and 04 ... The values Apparent power 5-
sum, Active power P-sum, Reactive power Q-sum, Lacking reactive power AQ and Power factor

(PIS) relate to a symmetrical power system.

Address Value Words Type Unit

500 Meas. Voltage 2 Float i
502 Current {including value for Q1 offset) 2 Float A
504 Freguency 2 Float Hz
506 Active power P-sum 2 Float W
508 Reactive power Q-sum (including O offset) 2 Float Var
510 Apparent power S-sum 2 Float WA
512 Lacking reactive power AQ (including Q offset) 2 Float var
514 Coso 2 Float -
516 Power factor (P/S) 2 Float -
518 Tan o 2 Float -
520 Ambient temperature 2 Float °C
522 Total harmonic distortion THD U 2 Float %
524 Harmonics U 3. order 2 Float Y%
526 Harmonics U 5. order 2 Float Y%
528 Harmonics U 7. order 2 Float Y%
540 Harmonics U 19. order 2 Float %
542 Current (measured) 2 Float A
544 Reactive power (measured) 2 Float var
546 Average Power factor 2 Float

548 Operation hours 2 Float h

3.2.9 Parameter settings

Parameters set by the user are stored in different data types. The base addresses and the data type can

be found in the table below.

All these values can be accessed with function codes 03, 04 neand 06p.,.

Address Value Factor Words Type Unit

102 PT ratio 10 1 UINT16

103 CT ratio 10 2 UINT32

105 Mominal voltage L — L 10 2 UINT32

107 Tolerance nominal voltage 1 UINT16 %
108 Fhase - offset 1 SINT16 :
109 Control sensitivity 10 1 UINT16

o s
L e HEE
112 Discharge time 10 1 UINT16 s
113 Switching time 10 1 UINT16 s
114 Switching time delay Step exchange 10 1 UINT16 s
115 asymmetry factor 1 UINT16

116 Max. switching cycles 1 UINT32

118 Max. operation hours 1 UINT16 h
119 Limit THD-U 10 1 UINT16

120 Delay time THD U and Temperature 2 10 1 UINT16

121 Temperature limit 1 10 1 UINT16 :
122 Temperature limit 2 10 1 UINT16 :
123 C offset 5 1 SINT16 var
124 Temperature offset 1 SINT16 :

At address 100 user parameter are collected which has no underlying an numerical value. At this point
all user parameter are coded binary. Each single bit represents a adjustment in menu "Measurement”

respective "Control". For this is the UINT16 value coded as follows._

Address Words Type

Control output ' [UINT16

User parameter 1

| >
bit16 bit1

« Bit1: {1) = Connection Measurement L-L {0) = connection measurement L-N

+ Bit2: (1) = Target cos ¢ 2 active (0} = target cos ¢ 1 active

e Bit3: (1) = Measurement FIX EDHE”L

. Bitd: (1) = Measurement FIX B[]I—f_jh (if both set to 0, measureament is set to auto)

o Bith: (1) = automatic Step size detection off (0) = step size detection an

+ Bit6: (1) = Step exchange active (0} = step exchange off

« Bit7: {1) = Control off {0} = control on or hold

+ Bit8: (1) = Lifo mode active (0} = normal control mode

« Bit4: (1) = Kombifilter active {0) = normal control mode

+ Bit 10 (1) = Progressiv (0} = normal control made

o« Bit11: {1) = Al countdown when restart {0) = Al countdown off

« Bit1z: (1) = Target PF2 for P-Export (0) = No tanff switch over

« Bit13 (1) = Target PF2 via DI {0) = No tanff switch over

+« Bit 14 (1) = Dl active with closed input (0) = DI active with open input

= Bit 15 (1) = reset step database

+ Bit 16; (1) = recognize defective steps (0) = not recognize defective steps

At address 101 you can find the user parameters for Alarm, which has no underlying an numerical value.

At this point all user parameter are coded binary. This UINT 16 value coded as follows.

Address

101

Conftrol output

Words

Type

1 [UINT16

Alarm

bit16

Bit 1:

Bit 2

Bit 3:

Bit 4:

Bit &:

Bit 6:

Bit 7:

Bit &:

Bit 2

Bit 10:

Bit 11:

Bit 12:

Bit 13:

Bit 14:

Bit 1

Bit 16:

o

(1) ="THD U Alarm” enabled

(1) ="THD Alarm Steps off” enabled

(1) = "Temperature Alarm” enabled

{1) = "Control Alarm” enabled

(1) = "Defective Step Alarm” enabled

(1) = "Maintenance Alarm” enabled

(1) ="1=0 freeze PCF" enabled

(1) ="Derating Alarm” enabled

(1) = "Reset Userparameter”

(1) =temp. input as DI

(1) = control on "Hold"

(1) ="Al Abrt Alarm™ enabled

(1) = Reset Alarm manually

(1) = "Steps off when Q) cap” enabled
reserved

reserved

bit1
(0)="THD U Alarm" disabled
{0) = “THD Alarm Steps off” disabled
(0) = "Temperature Alarm” disabled
{0) = "Control Alarm” disabled
(0) = " Defective Step Alarm” disabled
(0) = "Maintenance Alarm” disabled
(0) = "I=0 freeze PCF" disabled

(0) = "Derating Alarm” disabled

(0) = temp_ input for temp. measurement
{0) = normal control

(0) = Al Abrt Alarm” disabled

(0) = Automatic alarm reset

{0) = "Steps off when Q cap” disabled

3.2.10 Step status

Information for every step are stored in a database. The referring information is available in different data

types. For the following mentioned registers the bit assignment below is valid for the outputs:

The state of the used control outputs can be seen in the bit mask below. If the referring bit = 1 the output is

active.
Address Words Type Unit
300 Contral output UINT16 -
Caontrol output

- >
bit16 bit1

« Bit1: (1)=Relay output 1 active (0) = Relay output 1 inactive

« Bit2: (1)=Relay output 2 active (0) = Relay output 2 inactive

« Bit3 (1)=Relay output 3 active (0) = Relay output 3 inactive

« Bit4: (1)=Relay output 4 active (0) = Relay output 4 inactive

« Bit5 (1)=Relay output 5 active (0) = Relay output 5 inactive

« BitG: (1)=Relay output & active (0) = Relay output 6 inactive

« Bit7. (1)=Relayoutput 7 active (0) = Relay output 7 inactive

« Bit8 (1) =Relay output 8 active (0) = Relay output 8 inactive

« Bit9: (1)=Relay output 9 active (0) = Relay output 9 inactive

« Bit10: (1) = Relay output 10 active (0) = Relay output 10 inactive

« Bit11. (1)=Relay output 11 active (0) = Relay output 11 inactive

« Bit12: (1) = Relay output 12 active (0) = Relay output 12 inactive

« Bit 13 (1) =Relay output 13 active (0) = Relay output 13 inactive

« Bit 14. (1) = Relay output 14 active (0) = Relay output 14 inactive

The base addresses and the data types can be found in the table below.

All these values can be accessed with function codes 03., ang 04 hew.

Address Value Words Type Units
200 Fix steps (1 = fix) 1 UINT16 -
201 Fix steps on/off (1 = aon) 1 LINT16 -
202 Defective steps (1 = defective) 1 UINT16 -

All further addresses and data types for the other step information can be found in the table below. The

values for the step sizes are based on nominal voltage.

Adress Value Factor words Type Unit
208 Current step size step 1 5 1 SINT16 var
209 Current step size step 2 5 1 SINT16 var
210 Current step size step 3 5 1 SINT16 var
211 Current step size step 4 5 1 SINT16 var
212 Current step size step 5 5 1 SINT16 var
218 Current step size step 11 5 1 SINT16 var
219 Current step size step 12 5 1 SINT16 var
220 Current step size step 13 5 1 SINT16 var
221 Current step size step 14 5 1 SINT16 var
222 Initial step size step 1 5 1 SINT16 var
223 Initial step size step 2 5 1 SINT16 var
224 Initial step size step 3 5 1 SINT16 var
225 Initial step size step 4 5 1 SINT16 var
226 Initial step size step 5 5 1 SINT16 var
232 Initial step size step 11 5 1 SINT16 var
233 Initial step size step 12 5 1 SINT16 var
234 Initial step size step 13 5 1 SINT16 var
235 Initial step size step 14 5 1 SINT16 var

Value Factor | words | Type

236 Switching cycles step 1 1 UINT16
237 Switching cycles step 2 1 UINT16
238 Switching cycles step 3 1 LUINT1G
239 Switching cycles step 4 1 UINT16
243 Switching cycles step 8 1 LUINT1G
244 Switching cycles step © 1 UINT16
248 Switching cycles step 11 1 UINT16
247 Switching cycles step 12 1 LUINT1G
248 Switching cycles step 13 1 UINT16
2459 Switching cycles step 14 1 LUINT1G

3.2.11 Device status

The following mentioned registers contain information of alarms, messages and the status of the digital
outputs. The assignment of the alarms can be seen in the bit mask below. If the referring bit = 1, the alarm is

active.

All these values can be accessed with function codes 03,., ;na 04 .

Address Words Type Unit
Alarm status 1 UINT16
Quiput
- >
bit16 bit1
« Bit1: (1)="Switching cycles” active (0} = "Switching cycles™ normal
« Bit2: (1)="0peration hours” active (0} = "Operation hours” normal
« Bit3d: (1)="Temperature Alarm 2" active (0) = "Temperature Alarm 27 normal
« Bit4: (1) ="Temperature Alarm 1" active (0) = "Temperature Alarm 17 normal
« Bith: (1) ="5Step derating Alarm” active (0) = "Step derating Alarm”™ narmal
« Bitg: (1) ="Defective Step Alarm™ active (0) = "Defective Step Alarm” normal
« Bit7: (1)="THD Alarm” active (0) ="THD Alarm” normal
« Bit8: (1)="Confrol alarm” active (0) = "Control Alarm” normal
« Bit9: (1)="0ver current alarm” aclive (0) = "Over current alarm” normal
« Bit10: (1)="Under current alarm” active (0) = *Under current alarm” normal
« Bit11: (1)="Voltage == tolerance alarm” active (0) = *Voltage == tolerance alarm” normal
« Biti1Z: reserved
« Bit14: reserved
« Bit15: reserved
« Bit16: reserved

The assignment of the alarm reactions can be seen in the bit mask below. If the referring bit = 1, the output

or the message is active.

Address Words Type

Alarm output 1 UINT16

Unit

Alarm output

Fy

bit16

« Bit 15 (1) = Alarm relay normal state (0) = Alarm relay fault state

« Bit16: reserved

bit1

All settings send by MODBUS are used immediately, but remember that this information

is only stored in the working memory. After a power blackout these settings will be lost.

To store the settings durable, you have to store the data in the non-volatile memory.

4 Trouble shooting

If the bus connection isn’'t working correctly, please check the fallowing points:

1. If there is no communication at all, then the error must be looked for between the BLR-CX and the

PCI

Possible causes can be:

- Check adjustment of baud rate, parity and address at the BLR-CX, possibly make

changes in the configuration

- Paossibly the bus lines A and B are interchanged, If necessary rectify

- Check adjustments of the converter RS485/RS232, possibly use the data sheet of the

converter

- Perhaps the port is already used by another application, if necessary stop this multiple

reservation

- Check termination and bias resistors, if necessary rectify

2. Does the cable of the bus connection have any damages? All plug connections are correct? If

necessary replace.

3. Is the pin assignment of the RS485 connection correct? If necessary rectify.

4. The shielding of the bus line must not be connected with the ground of the bus. But the shielding

should be connected to protective ground. If necessary rectify.

5. Is the communication possible, but there are problems with the software of the customer, then

please check the following points:

- Check adjustment of bus address, parity and baud rate in the software

- Check data format

Voltage:

Ambient temperature:

Humidity:
Overvoltage:
Protection:
Weight:

5 Device Data

5.1 Technical details

5.2

890-550V, 1ph., 50/60Hz, 2VA
operation: -20°V - 70°C

storage: -40°C - 85°C

0% - 95%, without condensation
I, dirt class 3

rear: IP20

ca. 0.4kg

Drawings

Top view / Draufsicht

100 |

Side view / Seitenansicht

ik

==

